2020 8th International Conference on Nano and Materials Science ICNMS 2020
January 17-20, 2020 | Seattle, WA, USA

Keynote Speaker

 

 Prof. Ramesh K. Agarwal

Washington University in St. Louis, USA
 

Professor Ramesh K. Agarwal is the William Palm Professor of Engineering in the department of Mechanical Engineering and Materials Science at Washington University in St. Louis. From 1994 to 2001, he was the Sam Bloomfield Distinguished Professor and Executive Director of the National Institute for Aviation Research at Wichita State University in Kansas. From 1978 to 1994, he was the Program Director and McDonnell Douglas Fellow at McDonnell Douglas Research Laboratories in St. Louis. Dr. Agarwal received Ph.D in Aeronautical Sciences from Stanford University in 1975, M.S. in Aeronautical Engineering from the University of Minnesota in 1969 and B.S. in Mechanical Engineering from Indian Institute of Technology, Kharagpur, India in 1968. Over a period of forty years, Professor Agarwal has worked in various areas of Computational Science and Engineering - Computational Fluid Dynamics (CFD), Computational Materials Science and Manufacturing, Computational Electromagnetics (CEM), Neuro-Computing, Control Theory and Systems, and Multidisciplinary Design and Optimization. He is the author and coauthor of over 500 journal and refereed conference publications. He has given many plenary, keynote and invited lectures at various national and international conferences worldwide in over fifty countries. Professor Agarwal continues to serve on many academic, government, and industrial advisory committees. Dr. Agarwal is a Fellow eighteen societies including the Institute of Electrical and Electronics Engineers (IEEE), American Association for Advancement of Science (AAAS), American Institute of Aeronautics and Astronautics (AIAA), American Physical Society (APS), American Society of Mechanical Engineers (ASME), Royal Aeronautical Society, Chinese Society of Aeronautics and Astronautics (CSAA), Society of Manufacturing Engineers (SME) and American Society for Engineering Education (ASEE). He has received many prestigious honors and national/international awards from various professional societies and organizations for his research contributions.

 

Keynote Speaker

 

 

Prof. Steven Y. Liang

Morris M. Bryan, Jr. Professor in Mechanical Engineering
for Advanced Manufacturing Systems
Georgia Institute of Technology, USA

Steven Y. Liang holds a 1987 Ph.D. in Mechanical Engineering from University of California at Berkeley, USA, and was founding Director of Precision Machining Research Consortium and Director of Manufacturing Education Program and has been Morris M. Bryan, Jr. Professor for Advanced Manufacturing Systems at Georgia Institute of Technology, USA. Dr. Liang served as President of Walsin Lihwa Corp., a publicly-traded manufacturing entity with over USD6 billions of yearly revenue. Dr. Liang's technical interests lie in advanced manufacturing, precision engineering, and materials-centric production, and in these areas he has supervised over 90 post-doctoral studies, Ph.D. dissertations, and M.S. theses and has authored in excess of 450 book chapters, archival journal papers, and professional conference articles. He has delivered more than 60 keynotes and invited seminars at industries, peer institutions, and conferences in over 20 countries on manufacturing science and technology. Dr. Liang served as President of North American Manufacturing Research Institution and Chair of Manufacturing Engineering Division of The American Society of Mechanical Engineers. He is Editor-in-Chief of Journal of Manufacturing and Materials Processing (MDPI) and Editor of International Journal of Precision Engineering and Manufacturing (Springer). Dr. Liang is the recipient of Robert B. Douglas Outstanding Young Manufacturing Engineer Award of SME, Ralph R. Teetor Education Award of SAE, Blackall Machine Tool and Gage Award of ASME, Milton C. Shaw Manufacturing Research Medal of ASME, etc. Dr. Liang is a fellow of both ASME and SME.

Speech Title: Predictive Manufacturing: Subtractive and Additive

Abstract: Manufacturing is the key to today’s industrial competitiveness, and it is broadly classified into two categories, subtractive and additive. In current study, the ability to predictively model manufacturing performance attributes in both categories is introduced. In subtractive manufacturing, modeling of laser-assisted and ultrasonic vibration-assisted milling are presented. In laser-assisted milling, the laser preheating temperature field is predicted, and the dynamic recrystallization as well as grain growth triggered under high temperature is considered, which enhances the accuracy of force and residual stress prediction. In ultrasonic vibration-assisted milling, the intermittent effect is considered through tool-workpiece separation criteria. And the force reduction in ultrasonic vibration-assisted milling is accurately predicted. In additive manufacturing, laser-assisted metal additive manufacturing is introduced. And the predictive modeling of temperature field in powder bed metal additive manufacturing is presented. The model considers heat transfer boundary including heat loss from convection and radiation at the part boundary. Through the comparison between measured and calculated molten pool dimensions, the model is proven to have high computational efficiency and high prediction accuracy.

 

Plenary Speaker

Prof. Jing Wang

Director of RF MEMS Transducers Group
Center for Wireless and Microwave Information Systems (WAMI Center)
Department of Electrical Engineering, University of South Florida

Dr. Jing Wang is a Full Professor in Department of Electrical Engineering at the University of South Florida, which he joined since 2006. He got dual B.S. degrees in Electrical Engineering and Mechanical Engineering from Tsinghua University in 1999. He received two M.S. degrees, one in electrical engineering, the other in mechanical engineering, and a Ph.D. degree from University of Michigan in 2000, 2002, 2006, respectively. His research interests include micromachined transducers, RF/Bio-MEMS, lab-on-a-chip and microfluidics, functional nanomaterials, nanomanufacturing, and RF/microwave devices. His work has been funded for more than $10M by research grants from federal agencies (NSF, DTRA, US Army, US Air Force, etc.) and contracts from more than a dozen companies. He has published more than 120 peer-reviewed papers and held 10 US patents. He serves as the chairperson for IEEE MTT/AP/EDS Florida West Coast Section and Director for the Wireless and Microwave Information (WAMI) Center. He has been elected as a member of the prestigious IEEE MTT-Technical Coordinating Committee on RF MEMS. He has chaired IEEE Wireless and Microwave Technology Conference (WAMICON) in the last a few years.

Speech Title: 3D-Printed mm-Wave Devices and Circuits for System-in-a-Package Applications

Abstract: This invited talk will present our recent research towards strategic design, additive manufacturing (AM also known as 3D printing), and characterization of devices, interconnects and circuits for the emerging mm-Wave and sub-THz system-in-a-package (SiP) applications. This talk begins with a brief overview of our research activities for development of a diverse library of well-characterized functional materials suited for additive manufacturing of mm-W devices, interconnection and packaging of integrated circuits (MMIC’s). The newly developed feedstock composites exhibit promising EM properties (er=4~12 and tandd <0.002) well suited for applications ranging from RF to mmW frequencies (with tested properties up to 110 GHz).
The 3D printed transmission lines and probe pads can be re-rendered to reach µm scale accuracy by laser trimming to facilitate on-package probe testing. The frequency response of a custom-designed distributed amplifier with a fully 3D printed chip assembly have been characterized between 1 GHz and 30 GHz, which exhibit much better wideband performance than an identical QFN-packaged amplifier. On-package probe measurements of a 3D printed microstrip line has exhibited low insertion losses of 0.028 dB/mm at 5 GHz and 0.187dB/mm at 20 GHz, while CPW lines show an insertion loss lower than 0.34 dB/mm at 110 GHz.
This talk also presents a comprehensive study of the design of a multilayer dielectric rod waveguide (DRW), which is comprised of a high permittivity core encased by a low permittivity cladding. The insertion loss of the multi-layer DRW is less than 0.012 dB/mm at Ku-band frequencies and as low as 0.4 dB/mm at WR6 band (110-170 GHz). A dielectric rod antenna (DRA) that consists of a medium permittivity dielectric rod core encased by a low permittivity cladding is also designed to raise the peak gain by 3-9 dB at 30-40 GHz.